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A Wholesale Power Trading Simulator
With Learning Capabilities
Toshiyuki Sueyoshi and Gopalakrishna Reddy Tadiparthi

Abstract—The US wholesale power market comprises a large
commodity market. The growth in power trading is due to the
ongoing deregulation policy of the electric power industry. Most
deregulation scenarios indicate a further separation of power pro-
duction from transmission and retailing. The power production
is opened to more competition. Unfortunately, the power trading
mechanism is not clearly investigated in the level that we can pre-
dict a price change in the U.S. wholesale power market. Such a
price change in the U.S. wholesale power market is explored from
a simulation system with learning capabilities. Using the new in-
telligence system, we investigate the bidding strategies of traders
in the wholesale power market and examine how the price change
occurs under different economic and engineering environments.

Index Terms—Electricity competition, machine learning, market
model, strategic pricing, wholesale power trading.

I. INTRODUCTION

DEREGULATION of the electric power industry is a gen-
eral business trend occurring in many industrial nations.

Regulated or state-owned monopoly markets have been dereg-
ulated and competition has been introduced into the electric
power industry. The business trend first occurred in the United
Kingdom [10] and was followed by other nations such as
New Zealand, Sweden [2], Norway [1], and Australia [6]. Such
deregulation could be also found in American jurisdictions such
as New England, New York, California, and Pennsylvania-New
Jersey-Maryland (PJM). Recently, Japan has been planning to
deregulate her wholesale power market. Eighteen electric power
firms will open a new wholesale exchange power market in
April 2005 **AUTHOR: PLEASE CONFIRM/UPDATE**.

Electricity has several unique features that are different from
other commodities. First, it cannot be stored as found in other
commodities. Second, a constant monitoring system is required
to stabilize a balance between supply and demand; both are
often expressed by a nonlinear relationship. Third, most resi-
dential consumers are, on a short time, unaware of or indifferent
to a price change. In other words, price elasticity is considerably
small, compared with other commodities. Finally, the demand
is influenced by a change in temperature and a seasonal change.
A large demand occurs on electricity in summer and winter, de-
pending upon the place where the demand occurs.
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In addition to the above unique features regarding electricity,
a price change in the wholesale power market occurs due to
other socio-economic and engineering factors. Such factors in-
clude: 1) an imperfect market structure; 2) a possible existence
of a market power; 3) an occurrence of congestion in transmis-
sion; 4) different speculation views among traders; 5) imperfect
information on electricity transmission, (f) different bidding ap-
proaches among traders; 6) a system failure and a maintenance
problem; and 7) a price change of fuel (e.g., coal, oil, and nat-
ural gas). Thus, the wholesale power market can be considered
as a complex system.

Many individuals, who are involved in the power industry,
are looking for a policy guidance regarding how to determine
an appropriate pricing system of electricity. To investigate the
business/policy issue, this study examines the wholesale power
market by a simulation study, because the numerical approach is
more effective in dealing with the complex system than the ana-
lytical (mathematical) approach. Many different types of traders
participate in a dynamic pricing mechanism of the power market
on simulation. Thus, the purpose of this research is to develop a
trading simulator that predicts a price fluctuation of the whole-
sale power market.

The remaining structure of this article is organized as follows:
The next section briefly reviews previous research efforts on
power trading. Section III describes the industrial structure of
the current U.S. wholesale power market. Section IV describes
the computational structure of the proposed simulator. Section V
documents simulation results. Section VI concludes this study,
along with future research extensions.

II. PREVIOUS RESEARCH

This literature review indicates the position of the proposed
approach by comparing itself with other previous research ef-
forts on the power trade issue. The previous research is method-
ologically classified into the following three groups.

A. Behavioral Analysis

The first group discussed their bidding strategies of traders
in the deregulated power market [15], [19], [7]. The behavioral
aspect of trading was examined from a perspective of bilateral
electricity contracts that need a risk hedge in the power market
[9], [21]. Game theory was used to investigate their negotiation
behaviors for bilateral and multilateral contacts [32], [11], [25],
[30]. A contribution of this research group is that these research
efforts provide the analytical features of electricity trading be-
haviors. For example, it provides analytical rationale and expla-
nation regarding how a market power(s) makes an impact on a
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wholesale price. Meanwhile, the behavioral research excludes
important uncontrollable factors such as different speculations
and bidding preferences among traders. Consequently, this type
of analytical approach is methodologically limited in price pre-
dictability of the power market.

B. Economic Analysis

The second group of research has developed mathematical
models (e.g.,integer programming, stochastic programming and
forecasting models) to find an optimal bidding strategy. The
power allocation, derived from the optimal bidding strategy,
needs to satisfy transmission requirements from a demand side
of electricity [3], [8], [16], [18], [26]. An important feature of
the second group is that the research efforts do not consider the
behavioral aspect of traders, as identified in the first group. A
main objective of these approaches is to achieve the economic
efficiency of the power market.

C. Numerical Analysis

The last group of previous research efforts fully utilizes com-
puter science methods (e.g., neural networks (NNs), a genetic
algorithm, and a multiadaptive learning model) to predict a
change of power price and a dynamic fluctuation of other factors
(e.g., weather) that influence the amount of electricity demand.
The NN technique, incorporating a learning process, was ap-
plied for one-hour ahead forecasting of a power demand based
upon a given temperature [22], [29]. The volatility of power
price was also measured by NNs [33]. The NN technique is a
widely used numerical approach that heuristically approximates
the dynamic trend of a power price by duplicating the learning
process of a human brain. A methodological strength of NNs is
that the approach is so flexible that the estimation reliability of
NNs is considerably high. However, the NN estimation lacks a
mathematical rationale. Moreover, the convergence rate of NNs
is very slow in producing a final estimation result(s), because
many weights are associated with the NN computation. In
the same vain, a genetic algorithm was applied to understand
bidding strategies in the power market [20]. The approach is
useful when the power market is not volatile. In addition to the
NN technique and the genetic algorithm, Jacobs [13], Bagnall
[5], and Morikiyo and Goto [17] have considered the power
market from a multiagent adaptive system [27] and applied a
simulation-based approach to understand the dynamic bidding
process of the power market. These research efforts comprise
the third subgroup of the numerical analysis. A methodological
benefit of the approach is that many traders are considered as
agents with different bidding preferences. (See Axelrod [4]
for a detailed discussion on historical and current issues on
agent-based modeling.)

Admitting the previous contributions on power trading, this
study explores the wholesale power market from a simulation
study, because the market can be considered as a complex
system, as mentioned previously. Furthermore, a machine
learning process is incorporated into the proposed approach
to understand both how traders accumulate their knowledge
and how to use their experiences for power trading. Thus, this
research belongs to the above third group. However, this type

of research has been not sufficiently explored in the previous
research efforts.

Finally, this research is concerned with numerical analysis on
power trading. Therefore, we do not discuss its public policy
issues. Readers who are interested in the policy perspectives
on power trading can find many previous research efforts such
as Joskow and Schmalensee [14], Stoft [28], Schweppe et al.
[24], and Wilson [31]. See also [23] for a detailed description
on electric power from a general engineering perspective.

III. INDUSTRIAL STRUCTURE OF U.S. WHOLESALE MARKET

The U.S. wholesale market is functionally separated into: 1)
a transmission market and 2) a power exchange market. This
study focuses upon only the power exchange market. (Research
on bidding behaviors on transmission is an important future ex-
tension of this study.)

The U.S. wholesale power exchange market is further func-
tionally broken down into: 1) a real-time market (transaction on
a five-minute interval); 2) an hour-ahead market; 3) a day-ahead
market; and 4) a long-term market (transaction from one week
to five or more years). Each market has unique features in terms
of an auction/exchange process and transmission agreement.

This research focuses upon trading strategies for both a Day-
Ahead (DA) market and a Real Time (RT) market, because their
bidding behaviors of traders in both DA and RT markets have
a close bidding linkage between them. Moreover, the two mar-
kets are important in the investigation of a price fluctuation in
the wholesale power market. In this study, the RT market implies
not only the real time market but also the hour-ahead market, be-
cause the two are functionally similar and decided on the same
day. Many researchers (e.g., Stoft, [28, p. 204]) consider that the
DA market is a “financial and forward” market because all the
transactions in the DA market stop one day prior to RT and the
bidding decisions in the DA market are determined by the spec-
ulation of traders. Meanwhile, the RT market can be considered
as a “physical and spot” market, because the delivery of power
in the RT market is not optional like that of the DA market. All
traders enter the market to correspond to actual power flows.
Hence, the aspect of financial speculation is very limited in the
RT market. Thus, the RT can be considered as a physical market.
In the RT market, traders need to make their decisions within a
limited time (e.g., one hour or five minutes). So, it can be con-
sidered as a spot market.

Finally, the risk hedge behavior of a trader(s) in the long-term
market is different from their trading approaches in the other
power markets. The power trading for the long-term contract is
bilaterally determined between a generator and a wholesaler/re-
tailer. Hence, the long-term market is excluded from the inves-
tigation of this study.

A. Auction Theory

According to [12], the auctions are classified into the fol-
lowing four types: 1) English: buyers start bidding at a low
price—the highest bidder wins and pays the last price bid; 2)
Dutch: the auctioneer starts very high and calls out progres-
sively lower prices. The first buyer, who accepts the price, wins
and pays the price; 3) Vickrey (second-price): buyers submit
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sealed bids. The winner pays the price of the highest losing bid;
and 4) Sealed-bid (first-price): buyers submit sealed bids. The
winner pays the price that is the highest among bids.

When examining the four types of auction from the perspec-
tive of wholesale power trading, it is important to note that all
the auctions, listed above, belong to a single-settlement system
where traders bid their prices once to determine a winning price.
However, the wholesale power trading examined in this study
belongs to a two-settlement system (TSS), where traders bid
their prices in the DA market and then make their bids again in
the RT market (Stoft [28, p. 210]). Furthermore, multiple bid-
dings are accepted in the DA and RT markets.

B. Design of Power Market (Bilateral vs Central as Well as
Exchange Versus Pool)

As mentioned previously, this study does not consider bilat-
eral trading (e.g., a long-term market). The bilateral trading usu-
ally responds slowly because it lacks a transparent market price.
Meanwhile, the power allocation for DA and RT is traded in a
centralized market [often found in an Independent System Oper-
ator (ISO)] that provides traders with a transparent price. Con-
sequently, traders in the central market find an efficient set of
trades much faster and easier than those in the bilateral market.

The central market is functionally separated into an exchange
market and a pool market. The power exchange market is de-
fined as a centralized market that does not use side payments
(Stoft [28, p. 223]). In the exchange market, wholesalers pay the
same price to generators at any given time and location. A trader
simply trades with exchange at the trader location. California’s
Power Exchange is an example of the standard power exchange
in operation. In the market, traders use multiple rounds of bid-
ding (24 hourly bids) to determine a market price and can im-
plement full nodal pricing, where the nodal price implies a price
at every node or bus of a power network. Meanwhile, the pool
market is adopted by PJM and NYISO (New York ISO). In the
market, generators report a detail of their costs and limitations
to a market operator. The market operator then computes which
generators need to be started ahead of time. It finds an optimal
allocation under an assumption that all bids and demand fore-
casts are correct. The market operator may find a market price
whose level is lower than the price that generators can start up.
In this case, these generators can receive side payments.

IV. SIMULATION STRUCTURE FOR POWER TRADING

A. A Market Design for Wholesale Power Trading

In the proposed simulator, the wholesale power market is
structured by the DA and RT markets. In each market, gener-
ators (suppliers) and wholesalers/retailers (buyers) consist of
trade agents whose bidding strategies are examined in our sim-
ulation study. Each trader independently behaves for the en-
hancement of his/her own interest or benefit. Based upon the
previous bidding results (success/ failure), each trader accumu-
lates knowledge for his/her future decision-making.

We acknowledge that the proposed simulator cannot perfectly
duplicate real trading behaviors in the power trade markets.
Hence, this study needs to consider first how to structure DA

and RT markets from their bidding strategies and economic
rationales of traders. Then, different parameters regarding
bidding strategies and different initial starting points are used
to express their various trading behaviors in the two markets.
Furthermore, it is widely accepted that a reward obtained from
his/her previous trading often becomes a major economic
incentive for many traders. The learning process incorporated
in the simulator can be considered as a computational approach
in which a trader tries to maximize a total amount of reward
obtained from power trading.

The bidding processes of traders in both DA and RT markets
can be visually summarized in Fig. 1. The assumption and bid-
ding strategies incorporated in Fig. 1 are summarized as follows.

Assumption: generators ( ) and wholesalers
( ) participate in the DA and RT markets at the th
period ( ).

Supply Side Strategy in DA Market: is the maximum
power generation capacity of the th generator at the th period.
The generator bids as the amount of power generation for
the DA market ( ). Here, the superscript “1” indicates
the DA market and the subscript “ ” indicates a power delivery
time. The bidding amount is expressed by , where
( ) is a parameter to express the ratio of the bidding
amount to the maximum capacity.

Let be the marginal cost of the th generator at the th
period. Each generator determines a bidding price ( ) for the
DA market by . Here, ( ) is
a mark-up rate of the generator for the DA market. The mark-up
rate expresses numerically how much the bidding price is in-
flated from the marginal cost. The mark-up rate reflects a price
strategy toward the DA trading. Considering different magni-
tudes of , the simulator examines various price strategies in
the DA market.

After and are submitted by all generators into ISO, the
organization determines the real allocation ( ) for each gener-
ator in the DA market. The real allocation ( ), determined by
the DA market, is different from (a bidding amount).

Supply Side Strategy in RT Market: In the wholesale market,
each generator is expected to allocate the whole generation ca-
pacity to the DA and/or RT market. Hence, the th generator
bids in the RT market, where the superscript “0”
indicates the RT market. The pricing strategy of the generator
is expressed by , where is a mark-up
rate ( ) and is the bidding price of the generator.
In the RT market, ISO obtains their bids on and from all
generators to determine (a real allocation for the generator)
and (a market price) through the RT market.

Demand Side Strategy in DA Market: A wholesaler predicts
an expected amount of electricity demanded on a delivery day,
using a forecasting method. (The forecasting technique will be
discussed in the proceeding subsection.) Let be the demand
estimated by the th wholesaler or ISO. The wholesaler pre-
dicts a bidding price ( ) by using an inverse function (IF) of
demand. That is, . In the proposed simulator, the
wholesaler makes a demand bid ( ) whose amount is less than
or equal to . That is, , where ( ) is a
parameter to express how each bid is strategically reduced from
the demand estimate. Similarly, the bidding price for demand is
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determined by . Here, ( ) is a param-
eter for price adjustment from the estimated price. Both and

are submitted to ISO and then the organization determines
(a real power allocation to the wholesaler) and (a market

price) in the DA market.
Demand-Side Strategy in RT Market: In the RT market, all

the wholesalers specify their required quantities on electricity. It
is assumed that they must purchase all the necessary electricity
from DA and/or RT markets. Let be a real demand for the
th wholesaler on the delivery day. The wholesaler specifies the

purchasing amount, ( ), in the RT market. ISO
adjusts all the requests from market participants to determine

(a real allocation) and (a market price) through the RT
market.

Finally, the following three additional comments are impor-
tant for understanding Fig. 1.

1) The design of the DA and RT markets has a computational
benefit that the bidding prices and power allocations are
numerically expressed by the parameters on the range be-
tween 0 and 1. As a result of such numeration, the trading
structure for the wholesale power market can be artifi-
cially duplicated by the simulator.

2) Information on , , , and needs to be
given to the simulator. The remaining other variables are
determined by each trader.

3) The simulation needs to satisfy the following condition:

B. Function of ISO in DA and RT Markets

In the DA market, generators bid their and . Simi-
larly, wholesalers bid their and in the DA market. How
can we coordinate these bidding prices and amounts to obtain a
market price? Such a required market coordination mechanism
can be found in ISO.

Fig. 2 visually describes the market coordination mechanism
of ISO in the DA market. In the proposed simulator, ISO re-
orders their biddings of generators and wholesalers. That is, the
supply side combinations ( and ) are reordered according
to the ascending order of these bidding prices ( ). Thus, the
bidding process can be considered as a sealed English auction
with acceptance of multiple bids. Meanwhile, the demand side
combinations ( and ) are reordered according to the de-
scending order of these bidding prices ( ). The bidding process
can be considered as a sealed Dutch auction with acceptance of
multiple bids. In Fig. 2, ISO allocates the generation amount
( ) of the first generator to satisfy the demand ( ) of the
first wholesaler. Such a power allocation is continued until an
equilibrium point is found in the DA market. In Fig. 2, the equi-
librium point is identified as EP, where the four generators are
used to satisfy the demand required by the three wholesalers.
Consequently, (the bidding price of the fourth generator)
becomes the market price ( ) for all participating traders in the
DA market.

Fig. 1. Bidding structure for wholesale market.

Fig. 2. Equilibrium point in DA market.

Fig. 3 depicts the market coordination mechanism for the RT
market, where generators bid both and . The combination
of quantities and bidding prices are reordered according to
the ascending order of these bidding prices ( ). Meanwhile,
wholesalers submit their demands ( ), but not the bidding
prices, because the RT market is a physical market where the
demand of end users must be always satisfied. In Fig. 3, ISO
accumulates the generation amounts until the total demand is
satisfied. In the figure, is such a point, where

In Fig. 3, an equilibrium point is identified as EP, where
five generators are used to satisfy the total demand required by
wholesalers. Consequently, (the bidding price of the fifth
generator) becomes the market price ( ) for all participating
traders in the RT market.

C. Demand Forecasting

Each wholesaler (or ISO) needs to forecast the demand of
electricity. In this study, average, moving-average, exponential
smoothing, and random forecasting methods are used to esti-
mate the amount of demand. A choice from the four forecasting
techniques depends upon each wholesaler. Since a description
on the average and random forecasting are trivial to us, this study
omits the description on those methods except noting the fol-
lowing.

a) Moving Average: This method averages a data set for only
the last periods as the forecast for the next period. That
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Fig. 3. Equilibrium point in RT market.

is, , where is the observed real
demand of the th wholesaler at the th period.

b) Exponential Smoothing: This method uses the following
formula: , where ( )
is referred to as a smoothing constant.

It is true that different agents have different preferences on
their forecasting methods. However, it is also true that we cannot
perfectly duplicate their minds related to future demand predic-
tion. Hence, this study provides a choice in which all the traders
can select one of the four methods for their forecasting.

The inverse function (IF) of demand used in this study may
be depicted in Fig. 4. As visually described in Fig. 4, the de-
mand is structurally separated into a residential use (the left
hand side from the vertex) and an industry/business use (the
right hand side from the vertex). The former has low price elas-
ticity, while the latter has relatively high price elasticity. Hence,
the slope ( ) of the residential use is higher than the slope ( )
of the industrial/commercial use. The intercept of the two lines
are expressed by (for the residential use) and (the indus-
trial/business use). The four coefficients need to be specified by
each wholesaler (or ISO). In Fig. 4, indicates the maximum
amount of power estimation of the th wholesaler. In the DA
market, each wholesaler forecasts the demand estimate ( ) and
its related price ( ) on the IF of demand. As mentioned previ-
ously; since the market is DA, the wholesaler determines his/her
bidding amount ( ) in a manner that the quantity is less than or
equal to . Moreover, the bidding price ( ) is set to be smaller
than the price estimate ( ).

D. A Reward to Traders

In the proposed simulator, traders are looking for the best
combination of bidding prices and amounts in order to maxi-
mize their individual rewards.

A reward for the th generator may be specified in the fol-
lowing manner. If , then the generator cannot have any
chance to produce power, so resulting in no profit in the DA
market. Meanwhile, if , then the generator receives a
total profit . Similarly, if , the generator
loses a chance to generate electricity, so resulting in no profit in
the RT market. Meanwhile, if , the generator can pro-
vide electricity so that it produces a profit .

Fig. 4. Inverse function of demand.

Consequently, the reward for the th generator can be summa-
rized as follows:

if p̂ � p and p̂ � p , then (p̂ �MC )ŝ + (p̂ �MC )ŝ

if p̂ < p and p̂ � p , then (p̂ �MC )ŝ ,

if p̂ � p and p̂ < p , then (p̂ �MC )ŝ , and

if p̂ < p and p̂ < p , then the reward becomes zero.

Next, we return to the reward to the th wholesaler. If
, then the wholesaler cannot access a power supply

through the DA market. Meanwhile, if , then the
wholesaler can obtain the power from the DA market. Sim-
ilarly, if , then the wholesaler can access the power
supply in the RT market. An opposite case can be found if

. The wholesaler usually provides electricity whose
price is ruled by a regulatory agency(s). Hence, let be the
retail price. Then, the reward for the th wholesaler can be
specified as follows:

(a) if p̂ � p and d̂ > 0, then p (d̂ + d̂ )� p̂ d̂ � p̂ d̂

(b) if p̂ > p and d̂ > 0, then p (d̂ )� p̂ d̂

(c) if p̂ � p and d̂ = 0, then p (d̂ )� p̂ d̂ , and

(d) if p̂ > p and d̂ = 0, then the reward becomes

zero.

E. Machine Learning

In the proposed simulator, traders accumulate knowledge
from their bidding results to adjust their bidding strategies. The
learning process incorporated in the simulator is separated into:
1) a knowledge accumulation (KA) process ( ) and 2) an
own-bidding (OB) process ( ). Fig. 5 depicts such a
learning process.

The KA process provides each trader with a win-loss expe-
rience as a result of their biddings. In the process, all parame-
ters are obtained from a random number generation. After the
learning process is over, traders start their own bidding decisions
based upon their previous trading experiences. Of course, they
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Fig. 5. Adaptive learning process.

update and accumulate their knowledge at each trading. The bid-
ding/learning process is considered as the OB process in this
study. The proposed simulator incorporates an adaptive sigmoid
decision rule. The decision rule can be analytically specified as
follows.

Adaptive Sigmoid Decision Rule: The win or lose of a
trader is considered as a binary response. To express an oc-
currence of the binary response, a sigmoid model is widely
used to predict its probability. Mathematically, the probability
cumulative function of the sigmoid model is expressed by

. The win/loss
status of the th generation is predicted by the following linear
probability model:

(1)

Here, is a reward given to the th generator at the th period.
Parameters are denoted by , , , and . An observational
error is listed as . Those parameters are unknown and hence,
need to be estimated by ordinary least squares (OLS) regression.
The winning probability (Prob) of the th generator at the th
period can be specified as follows:

The symbol ( ) indicates a parameter estimate obtained by
OLS. The above equations suggest that the winning probability
can be determined immediately from parameter estimates of the
sigmoid model. (The sigmoid model is often incorporated into a
neural network computation. The proposed learning process can
be, therefore, considered as a simple application of the neural

network. The sigmoid model is often called “a logit model” by
economists.)

The winning probability of the th wholesaler at the th pe-
riod can be obtained, via replacing (1), by the following linear
probability model:

(2)

The winning probability can be specified as

Learning Algorithm: In the proposed learning process, each
trader constantly looks for an increase in the estimated win-
ning probability. In other words, the trader looks for a combi-
nation of parameters that produces a high winning probability.
To describe the learning process more clearly, we consider the
own bidding process of the th wholesaler at the th period.
For a visual description, this study considers the learning algo-
rithm from the perspective of the wholesaler, because the bid-
ding process can be expressed as a two-dimensional figure. The
algorithm discussed here can be easily extended to that of a gen-
erator. Such a description on the generator needs a three-dimen-
sional figure.

The knowledge accumulation process of the wholesaler pro-
vides three parameter estimates of the sigmoid function. Two
parameter estimates ( and ) are important in determining
the bidding strategies of wholesalers and both are associated
with two decision variables ( and ), respectively. If a
parameter estimate is positive, the wholesaler should increase
its corresponding decision variable to enhance his/her winning
probability in the wholesale market. (Note that the winning
probability, obtained from the sigmoid function, does not
immediately imply that the trader can win in the wholesale
market with the estimated probability. That is a theoretical
guess. The win or lose is determined through the DA and RT
market mechanism.)

Based upon the signs of parameter estimates obtained from
the knowledge accumulation process, the wholesaler has nine
different bidding strategies (with as the start).

Step 1: Set the initial bidding variables as ( , ). Also,
set the upper ( and ) and lower ( and )
bounds on the bidding variables based upon the bid-
ding strategy of the th wholesaler. Both

and are required conditions
on the two parameters. In the case where no infor-
mation is available, ( , ) are determined by the
moving average or exponential smoothing score of
the previous biddings in the KA process. Further-
more, and are used as
these decision variables.

Step 2: Use OLS to obtain parameter estimates of the sig-
moid function from the KA process.

Step 3: Based upon the signs of the parameter estimates,
the decision variables on bidding are changed as
follows:

(a) If & , then
. (b) If &
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, then . (c)
If & , then

. (d) If & ,
then . (e) If
& , then .

(f) If & , then
. (g) If & , then

.
(h) If & , then

. (i) If & , then
.

Note that
.

Step 4: Compute and using ( , ) and submit the
bids to the DA market. If , then stop. Other-
wise, go to Step 5.

Step 5: Set . If the trader loses (his/her reward is
zero), then go to Step 1. If the trader wins (his/her
reward is positive), then go to Step 6.

Step 6: Reset the bidding variables as the current ones.
Reset the upper and lower bounds according to
Table I below and go to Step 1.

Note that the above table implies, for example, that if
and , then the upper and lower bounds of the next ( )
step is set by , , and

. See the cell at the second column and the second row of the
table. The remaining eight cases can be explained by a similar
manner.

Fig. 6 visually describes the above learning process for
strategic bidding. In the figure, the initial bidding variables of
a trader (for wholesale) are expressed on C. There are four
different directions toward NE (North-East), SE (South-East),
NW (North-West) and SW (South-West). As specified in Step
3, the new bidding amounts can be identified on A, E, B,
D, respectively. If a parameter estimate contains zero, these
bidding amounts are found on i, f, g, h and C. (Note that if
both parameter estimates are zero, the trader keeps the current
strategy at the next bidding, so being on C in Fig. 6. Even if
the trader keeps the same strategy, the market result may be
different from the previous one, because the market determines
the price and amount of power allocation.)

Step 3 uses a value of 1/2 in the nice bidding strategies to find
these locations (i.e., A, E, .. ,g and h). There is no theoretical
rationale on the selection of 1/2. However, the value selection
indicates the center of each moving area that is shaped by the
upper and lower bounds, as depicted in Fig. 6. Comparing it with
other numbers (e.g., 1/4 and 3/4), the convergence speed under
1/2 is slight better than the others in this study. Furthermore, we
cannot find any difficulty on convergence (e.g, no convergence)
in this study. However, there is no theoretical justification on the
convergence issue. That is an important future research task.

Thus, the parameter estimates of the sigmoid function ob-
tained in the KA/OB process provide each trader with informa-
tion regarding which is the best bidding choice among these nine
alternatives. As long as the trader can win, the search area is re-
duced to a smaller bidding range.

TABLE I
UPDATES OF BIDDING VARIABLES

Fig. 6. Adaptive learning process.

F. A Visual Description on Computer Software

Fig. 7 depicts a monitor of our software that shows the DA
and RT markets. The programming language of software is C#
(Microsoft.NETFramework1.1).1 We can observe the dynamics
of equilibrium points in the DA and RT markets, as found in
the top of the computer monitor. Those changes correspond to
Figs. 2 and 3. The graph in the middle of Fig. 7 depicts the trend
of market prices (in DA and RT markets). The last one at the
bottom of Fig. 7 indicates the trend of power amounts traded in
the two markets.

V. A SIMULATION STUDY

The following assertions are examined by our simulation
study: 1) there are two wholesale power markets (DA and RT).
Which market is important for generators? 2) What type of
risk taking is important for generators? Table II sets parameter
ranges to examine the two assertions. The table is structured by
2 2 factors, where the first 2 is related to DA or RT and the
other 2 is related to pricing or quantity strategy. This simulation
study excludes the strategies of wholesalers, because their

1Source: http://msdn.microsoft.com/netframework.
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Fig. 7. Computer monitor of software.

TABLE II
MARKET AND PRICING STRATEGIES OF GENERATORS

decisions are often influenced by external factors such as a
temperature change and a seasonal effect.

As depicted in Fig. 1, electricity is procured from either the
DA or RT market. Hence, if a generator prefers to sell electricity
mainly in the DA market, is set to be between 0.5 and 1.
Meanwhile, if the generator prefers to sell electricity mainly in
the RT market, the parameter is set to be between 0 and 0.5.
The pricing strategy of the generator is further separated into
two cases (risk taker or risk avoider). Here, the risk taker looks
for a high reward by offering a high bidding price. This type
of bidding strategy leads to a high risk, because a probability,
that the bidding price is larger than an equilibrium market price,
becomes larger and consequently, a chance to sell his/her elec-
tricity becomes lower than before. Conversely, an opposite case
(low risk and low reward) can be found in the risk avoider.

Parameters listed in Table II are used to express the bidding
strategy of the generators. As structured in Table II, eight [

] dif-
ferent combinations of parameters are examined to investigate
the market and pricing strategies.

Under each strategy, these parameters are randomly gener-
ated on the specified data ranges. Those ranges are selected ar-
bitrarily in a way that the selection reflects the required types of
market preference and pricing strategy.

In this study, ten generators belong to each group and
their traders bid on the parameter ranges, as specified in
Table II. The remaining parameters are randomly gener-
ated between 0 and 1. The total number of generators is 80
( ). Meanwhile, 900 wholesalers
are incorporated into the simulation study. In this situation,
three different types of group mix are considered in terms of
learning (L) and nonlearning (NL). In each case, the average
reward of the generators equipped with the proposed learning
process is compared with the average rewards of the remaining
others without the learning process. Consequently, we can in-
vestigate strategic effectiveness related to the eight alternatives
on market and pricing strategies.

Such strategies of generators and simulation results are doc-
umented in Table III (unit: $1000). In the table, 100 replications
are generated for each combination. Consequently, the total av-
erage listed at the last column of Table III indicates the av-
erage reward of 3000 [

] bids of each generator under eight different
bidding strategies [i.e., Agent Types from a to h at the left hand
side of Table III]. Findings from Table III can be summarized
as follows.
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TABLE III
EIGHT DIFFERENT STRATEGIES AND AVERAGE REWARDS

A. Finding 1

The combination between DA (in quantity allocation)
and a risk-avoider (bidding price) produces the best reward
($1855.86) among the eight different strategies. The next
($1810.00) is the combination between RT and a risk-avoider.
The worst performer ($111.95) is found on the combination be-
tween RT and risk-taker. All the traders, who use the strategies
(a), (c), (e), and (g), result in low rewards ($175.32, $122.70,
$144.75, and $111.95), because their bidding strategies in RT
include a risk-taking decision on bidding prices. These results
indicate that generators need to set their bidding prices in the
manner that each price is not far above its marginal price. If they
become greedy, they will not obtain their expected rewards.

B. Finding 2

The comparison between the first four strategy combinations
and the remaining four indicates that the DA market is slightly
more important than the RT market in terms of reward enhance-
ment, because the former has more bidding freedom than the
latter.

C. Finding 3

In the two wholesale markets, traders equipped with the
learning capability outperform the other traders without the
learning capability.

Here, it is important to note the following comments.

a) We have slightly changed the upper and lower bounds of
these parameters (e.g., ) to confirm
the robustness of the above findings. The sensitivity anal-
ysis has produced an almost similar result documented in
Table III.

b) This simulation study does not consider a special bidding
case, like a “must-run” operation, in which a generator,
like a nuclear power plant, provides a wholesale power
market with free electricity in order to avoid a temporal
cease of its generation facility.

VI. A CONCLUSION AND FUTURE EXTENSIONS

To predict a price change of the U.S. wholesale power market,
a computer simulator with learning capabilities has been devel-
oped in this study. Using the software, we can investigate both

how traders determine the market price in the DA and RT mar-
kets and how the price change occurs under different trading
environments.

The proposed simulator has two important features. One of
the two is that the two settlement system (DA and RT) is incor-
porated into the artificial wholesale power market of the simu-
lator. The other important feature may be found in the learning
capability of traders who accumulate their bidding experience
and make a new bidding strategy to increase their winning prob-
abilities. A simulation study is conducted and simulation results
are summarized as the three findings in this study.

Using the proposed simulator, we can predict various nodal
(local) wholesale power prices, each of which depends upon a
grid system through which electricity is provided. Such a differ-
ence among nodal prices is generated in our simulator by using
different marginal costs, different electricity loads and other
economic and engineering concerns. Furthermore, the simulator
can change the number of participating traders, depending upon
the size of each grid system. Thus, the proposed simulator can be
used for not only a single market price for an entire grid system,
but also location-specific nodal prices for many different grid
subsystems.

Since this study is an initial step, the proposed approach may
be not perfect from a practical perspective. The following future
research tasks are envisioned to enhance the practicality of the
proposed simulator:

a) Demand Side: The wholesale power market is considered
as a complex dynamic system whose many components
are complicatedly connected to each other with imperfect
information [24], [31]. As a result of the complexity, we
cannot mathematically prove the methodological validity
of our simulation results. Thus, a bidding strategy sug-
gested by the proposed simulator does not always guar-
antee that it produces a positive reward. Such may be
indeed a shortcoming of this type of simulation-based
approach. To overcome the methodological problem, we
need to obtain real data on wholesale prices from PJM
and other power markets. Using the real data, we examine
how the proposed simulator can accurately predict a real
price fluctuation. Furthermore, a major source of the price
fluctuation (and complexity) is often due to a temperature
(weather) change and its related demand change. Hence,
we need to incorporate data mining techniques into the
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proposed simulator to enhance our forecasting capability
of the demand change.

b) Market Function: After the demand forecasting capability
is added to our simulator, we need to incorporate a com-
puter networking capability into the simulator. The com-
puter network artificially opens a wholesale market where
traders communicate with each other. In this research ex-
tension, game theory will serve as a conceptual basis for
exploring how traders make a coalition to win their trades.
Furthermore, we can investigate various types of negotia-
tion and cooperation among traders. The behavioral study
based upon the game theory will enhance the learning ca-
pabilities of traders to the level that the proposed simulator
becomes a multiagent adaptive system.

c) Supply Side: After the network function is added to the
simulator; each computer monitor, linked to the power
trading network, is designed to show different types of
cost on a computer monitor. Each trader can select which
type of cost is used for his/her trading decisions. In this
study, the marginal cost is used as a basis for determining
a bidding price and a reward in the current simulator. The
validity can be confirmed on the Web site of PJM where
the marginal cost is listed for real power trading markets.
This indicates that the marginal cost is used for the deci-
sions of traders. However, it is true that other information
on cost is also useful for traders if that is available for them
on a computer monitor. For example, as discussed in [23,
Ch. 4], the generators (or ISO) are expected to optimize
their generation resources to satisfy a demand load at a
minimized operation cost. The type of operation cost is re-
ferred to as “cost-based unit commitment (UC).” The cost
concept is further extended by considering a transmission
function that needs a careful monitoring process between
supply and demand. The extended cost concept is referred
to as “security-constrained unit commitment (SCUC).”
The SCUC implies a total operation cost for generation
scheduling, supplying load, maximizing power security,
and managing other transmission constraints. Thus, the
cost measures such as UC and SCUS need to be incor-
porated into the proposed simulator in addition to the
marginal cost. The two cost concepts are closely related
to a power transmission period. Therefore, both UC and
SCUS need to be examined in a generation scheme with
a specific time horizon.

d) Transmission: The simulator does not incorporate any
aspect on the power transmission. As a result, for ex-
ample, a price increase due to congestion has not been
considered in this study, because the incorporation of
transmission into the proposed simulator needs a large
mathematical modeling capability on maximum network
flow and its related algorithmic development. Further-
more, such congestion depends upon each grid system.
Simply, different grid systems have different network
structures. The system development, including the trans-
mission constraints on an entire power system, needs
to consider various regional and geographical concerns.
Thus, the simulator excludes the transmission issue in
our price setting mechanism. Of course, we will develop

a simulation capability on transmission line constraints
and add it to the proposed power exchange simulator in
our future work.

The completion of the above research plan will enhance the
practicality of the proposed simulator. It is believed that the net-
work-based multiagent simulator can replace the software that
is currently used for market operation in many wholesale power
markets like PJM and California ISO.

Finally, it is hoped that this study makes a small contribution
for research on the electric power industry. We look forward to
seeing future research extensions, as indicated in this study.
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