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Abstract

We present a methodology for analysis of differences
in variation levels in time series data. Our focus is on
automatic detection, as well as prediction, of periods
of relatively increased volatility in the time series data.
We accomplish this using a synthesis of three methods
from the fields of computer science — support vector
classifiers ~ (SVC),  statistics —  generalized
autoregressive conditional heteroskedasticity
(GARCH), and signal analysis — periodogram. The
outcome is a multi-layer tool, which has shown the
capability to accomplish detection and prediction tasks
with tractable results. An example of identification
and prediction of wvolatility clusters in currency-
exchange time returns is summarized.
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1. Introduction

Our overall objective was creation of a methodology
for swift detection and prediction of relative volatility
clusters in time-series data. The desired outcome was
a tool that might augment and enhance the analysis of
relative clustered volatility in dynamic time-series and
facilitate experts’ decision making in academic as well
as industrial settings.

The basis of our approach is the assumption that
relative volatility clusters have fundamentally different
patterns from sections with relatively low levels of
volatility. The term ‘patterns’ is used here to describe
the elements of the hidden, or latent, structure and
composition of objects.  This lends to virtual
partitioning of the universe of all time-series segments
into two classes, relatively volatile (RV) and relatively
nonvolatile (NV). This approach sets the stage for
deployment of support vector classifiers (SVC), which
is a supervised learning technique for binary
classification [1]. Using SVC we are able to categorize
a given section of financial time-series data into one of
the two mentioned classes: RV and NV. More details
on the algorithms and the approach in general can be
obtained in [7].

2. Algorithms

SVC is a member of the more extensive machine-
learning technique known as support vector machines
(SVM). Like SVC, SVM has derivations that tackle
function estimation/regression and density estimation.
The general SVM technique and all its derivations
have been applied to numerous problems and have, in
many cases, systematically performed equal to or
better than other pattern recognition and data analysis
techniques [2].

The simplest description of SVC is that it ‘learns’
to classify observations into one of two classes from
prior pre-classified examples. This characteristic puts
this method in the category of supervised
statistical/machine learning methods, which follow a
similar learning-by-examples framework. As such, the
process consists of two phases: training and testing. In
the training phase, the algorithm is presented with a
data set of observations (in our case these are time-
series segments of currency-exchange return data),
which have been pre-classified into one of the two
categories of interest [1][3][4], which, in this case, we
have denoted as RV and NV.

SVC requires a training set of observations for
which the class labels (in this case, RV and NV) have
been pre-determined.  Unlike many other SVC
applications, where real-world labels/classes are
obvious and/or easy to attain, it is not always obvious
whether a given time-series segment is relatively
volatile. This first step of the process — initial
identification of volatility clusters — was done using a
GARCH [5][6].

GARCH(p,q) defines the conditional variance at
time ¢, o(f)’, as a function of p past conditional
variances o(t—i)’ and g past squared shocks/changes
&(t—1i)*, called innovations:
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Changes in the conditional variance o(¢)* are
compared with an overall segment variance using a
y test. Statistically significant peaks in segments of
sufficient length (in this example, the minimum length



required for designation as RV was 10 observations)
constitute a volatility cluster. We select examples of
relative volatility segments and relatively nonvolatile
segments from within any time-series, to define the
two classes for the SVC training phase.

A standard SVC implementation requires the
input observations to be vectors of one common size,
with each component in the vectors measuring the
value of the corresponding feature. Thus, time-series
segments are input into SVC’s training algorithms as
vectors, where each tick in the series is a component in
the vectors. This, however, poses a problem in the
analysis of financial (and, in fact, most) time series
because there is no reason to expect relatively volatile
and nonvolatile segments to be of the same length.

To overcome this issue, the second stop of our
process is utilization of the periodogram signal
processing tool. Once GARCH has provided
relatively volatile and nonvolatile segments of
arbitrary length, they are input to a periodogram,
which returns the power spectrum density estimate
(PSDE) for each segment. We then substitute the
original segments with their corresponding PSDEs,
which solves the vector dimensionality issue. In
addition to solving the problem of unequal segments,
computing the PSDEs transforms the data from the
time domain into the domain of global structural
features [7].

3. Implementation

In our implementation, we started with raw daily
currency-exchange time series data, obtained from the
Pacific Exchange Rate Service [8]. The first phase of
our approach is the use of GARCH to select the RV
and NV examples. This is the most tedious part of the
method due to the trial-and-error nature of fitting
GARCH models. Human expertise in this phase is
necessary in most cases.

The data were foreign exchange daily closing
rates for around 70 currencies [8]. We deleted series
that did not contain RV segments. In the end, we had
45 time-series, each spanning the available time-line
of the particular currency.

After fitting the GARCH model and obtaining the
conditional variances, we selected the sections that
correspond to RV and NV segments. Fig. 1 illustrates
this phase on the Philippines’ peso to US Dollar raw
time-series data (Fig. 1.a) and identified volatility
segments — in red — over time (Fig. 1.b).
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Fig. 1: Plots of the price data and conditional standard
deviations with highlighted RV clusters for PHP/USD over
860 daily observations.

To standardize the lengths of these segments we
compute their PSDEs. Fig. 2 plots the PSDEs for the
segments shown in Fig. 1.b.

The third and final phase is the training of the
SVC decision function using the training data obtained
in the previous two steps (GARCH + PSDEs). It is
worthwhile to note that in many cases a NV segment
from one currency was in fact more volatile than a RV
segment of another. This fact illustrates the innate
complexity of defining a general approach for
identification and prediction of volatility clusters. To
counter the possible bias in the training/testing phase
of SVC due to differences in base volatility levels of
the segments, we added a new feature to each vector,
measuring the unconditional variance of the entire
time-series that each individual segment is from.
Once training was completed, we tested the accuracy
of the trained decision function on a dataset that also
contains observations with pre-determined classes.
We “tuned” the SVC parameters' and continued re-
training and re-testing until the best fit between
predicted and actual RV and NV segments was
attained. This iterative process provides a decision
function that is set to be used for identification of past
RV segments and for detection of present and about-
to-occur clusters in a real-time context.

! Kernel function and overfitting control parameter C.



It is paramount to note that in the application
phase our methodology is completely automated. A
computer simply needs to take a time-series segment
under question and classify it using the optimal
decision function. For the task of identification of past
RV segments one can input past segments to find out
whether they are RV.

Fig. 2: PSDEs of the conditional standard deviations.

For the task of detection of RV in a simulated
real-time context, we propose the following scenario.
The computer adds each new tick — in this case, a daily
return observation — to the end of a window of some
(variable) size. This window is then passed on to our
method and a decision on its class is obtained. If this
window is classified as RV, then we may have
effectively identified the beginning of a RV segment
as it occurs. As we describe below, the majority of
RV segments we tested with such rolling window
experiments were caught on the first observation of the
RV segments.

4. Experimental Results

After GARCH and PSDEs steps, we had obtained
1483 observations of segments of common length,
around 824 of which were relative volatility segments
and 659 were relatively nonvolatile. In order to assess
the accuracy of our three-step methodology, four fifths
of the entire dataset was randomly allocated for
training and the remaining one fifth was allocated for
testing. The highest accuracy of classifications on the
testing set was 99.5%. The optimal parameters for the
SVC were C: 4096 and Kernel: RBF|s = 8§192.

False positives (missed relatively nonvolatile
segments) and false negatives (missed reltively
volatile segments) occurred in 0.07% and 0.04% of the
segments, respectively. This means only 0.04% of the
relatively volatile segments in the test examples were
not classified correctly.

Another set of experiments was performed in
which, rather than objectively testing the performance
of our approach on a testing set produced the same
way as the training set, we generated random
segments, varying in lengths, from randomly chosen

time series. The classes of these segments were then
decided by the optimal SVC decision function. The
purpose of these experiments was for visual/subjective
validation of the method. Fig. 3 lists the results of
experiments performed on 2 of the time-series. The
plots display the original time series, with the
randomly chosen segments color-coded according to
the class, as decided by the SVC.
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Fig. 3: Random segments classified as RV or NV.

While the above results indicate the ability of
SVC to accurately classify relatively volatile
segments, we were more curious with how the SVC
would fare when only a part of a volatility segment
was available as in the case of detecting presently
occurring clusters in a real-time environment.

To test this we performed a series of rolling
window experiments on a set of known RV segments.
We let a window of fixed size begin a few ticks before
each RV segment and classified it as it rolled over the
boundary and into the RV segment. This experiment
was repeated on various window sizes in order to
empirically determine the optimal size for this overall
dataset. Fig. 4 contains the histograms of the detection
delays for several sizes. As the figure demonstrates, in
many cases our implementation detected the cluster
the moment the window passed the boundary (delay of
1 observation or tick). The experiments showed that
the optimal window size for this application was /0.
In addition they validated SVC as truly capable of
recovering complex patterns, even when statistical
information content is relatively scarce.
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Fig. 4: Detection delays for rolling window experiments
with several window sizes.

So far we have shown that our approach can be
applied to accurately identify volatile clusters that
have occurred in the past and to swiftly detect
volatility periods occurring at the present moment,
which is highly relevant in financial practice. The
next progression is modifying this approach to the task
of predicting volatility clusters. The advantage of this
methodology is that extension to prediction can be
accomplished with relative ease. The only difference
between detection and prediction — as described in the
previous section — is the choice of the training/testing
data sets. Rather than choosing examples of relatively
volatile segments — for the first class — we choose
suitable and representative pre-volatility segments,
which we hypothesized to contain patterns
differentiating segments occurring right before relative
volatility bursts from other segments. For the second
class, we found that best choice was a dataset of time-
series segments from currencies that do not contain
relative volatility clusters at all. Using this datasets,
the accuracy of the selected SVC decision function for
prediction of volatility bursts in a simulated real-time
basis reached 98% (the optimal parameters for the
SVC were C: 1024; Kernel: RBF|s = 542488).

Finally, we replicate the sliding windows
experiments for the prediction task. Fig. 5 is the
histogram of prediction delays. Negative delays signal
the successful prediction of the cluster that is about to
occur.

5. Conclusions

In this report we have described how we use SVC,
together with other powerful analytical tools, to
provide an efficient and highly accurate solution to a
dynamic, complex computational problem.

Several extensions are possible and indeed
necessary to make this approach more useful in the
real-time context.
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Fig. 5: Prediction delays for rolling window experiments for
window sizes equal to 10.

The first is the ability to detect more than just one
level of volatility. The use of multiple SVCs appears
as the simplest way to accomplish this. Several
specifications for multiple SVCs have been proposed
[9]: the most notable among them are the 1-vs-1, 1-vs-
all and DAGSVM methods. We believe that our
approach can be easily extended to handle multiple
classes: by defining training sets with segments from
the categories or classes of interest.
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