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Abstract 
2. Algorithms 

We present a methodology for analysis of differences 
in variation levels in time series data.  Our focus is on 
automatic detection, as well as prediction, of periods 
of relatively increased volatility in the time series data.  
We accomplish this using a synthesis of three methods 
from the fields of computer science – support vector 
classifiers (SVC), statistics – generalized 
autoregressive conditional heteroskedasticity 
(GARCH), and signal analysis – periodogram.  The 
outcome is a multi-layer tool, which has shown the 
capability to accomplish detection and prediction tasks 
with tractable results.  An example of identification 
and prediction of volatility clusters in currency-
exchange time returns is summarized. 

SVC is a member of the more extensive machine-
learning technique known as support vector machines 
(SVM).  Like SVC, SVM has derivations that tackle 
function estimation/regression and density estimation.  
The general SVM technique and all its derivations 
have been applied to numerous problems and have, in 
many cases, systematically performed equal to or 
better than other pattern recognition and data analysis 
techniques [2].   

The simplest description of SVC is that it ‘learns’ 
to classify observations into one of two classes from 
prior pre-classified examples.  This characteristic puts 
this method in the category of supervised 
statistical/machine learning methods, which follow a 
similar learning-by-examples framework.  As such, the 
process consists of two phases: training and testing.  In 
the training phase, the algorithm is presented with a 
data set of observations (in our case these are time-
series segments of currency-exchange return data), 
which have been pre-classified into one of the two 
categories of interest [1][3][4], which, in this case, we 
have denoted as RV and NV.   
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1. Introduction 
Our overall objective was creation of a methodology 
for swift detection and prediction of relative volatility 
clusters in time-series data.  The desired outcome was 
a tool that might augment and enhance the analysis of 
relative clustered volatility in dynamic time-series and 
facilitate experts’ decision making in academic as well 
as industrial settings.   

SVC requires a training set of observations for 
which the class labels (in this case, RV and NV) have 
been pre-determined.  Unlike many other SVC 
applications, where real-world labels/classes are 
obvious and/or easy to attain, it is not always obvious 
whether a given time-series segment is relatively 
volatile. This first step of the process – initial 
identification of volatility clusters – was done using a 
GARCH [5][6].   

The basis of our approach is the assumption that 
relative volatility clusters have fundamentally different 
patterns from sections with relatively low levels of 
volatility.  The term ‘patterns’ is used here to describe 
the elements of the hidden, or latent, structure and 
composition of objects.  This lends to virtual 
partitioning of the universe of all time-series segments 
into two classes, relatively volatile (RV) and relatively 
nonvolatile (NV).  This approach sets the stage for 
deployment of support vector classifiers (SVC), which 
is a supervised learning technique for binary 
classification [1]. Using SVC we are able to categorize 
a given section of financial time-series data into one of 
the two mentioned classes: RV and NV.  More details 
on the algorithms and the approach in general can be 
obtained in [7]. 

GARCH(p,q) defines the conditional variance at 
time t , , as a function of  past conditional 
variances and  past squared shocks/changes 

, called innovations: 
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Changes in the conditional variance  are 

compared with an overall segment variance using a 
test.  Statistically significant peaks in segments of 

sufficient length (in this example, the minimum length 
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 required for designation as RV was 10 observations) 
constitute a volatility cluster.  We select examples of 
relative volatility segments and relatively nonvolatile 
segments from within any time-series, to define the 
two classes for the SVC training phase.  

A standard SVC implementation requires the 
input observations to be vectors of one common size, 
with each component in the vectors measuring the 
value of the corresponding feature.  Thus, time-series 
segments are input into SVC’s training algorithms as 
vectors, where each tick in the series is a component in 
the vectors.  This, however, poses a problem in the 
analysis of financial (and, in fact, most) time series 
because there is no reason to expect relatively volatile 
and nonvolatile segments to be of the same length.   

To overcome this issue, the second stop of our 
process is utilization of the periodogram signal 
processing tool.  Once GARCH has provided 
relatively volatile and nonvolatile segments of 
arbitrary length, they are input to a periodogram, 
which returns the power spectrum density estimate 
(PSDE) for each segment.  We then substitute the 
original segments with their corresponding PSDEs, 
which solves the vector dimensionality issue.  In 
addition to solving the problem of unequal segments, 
computing the PSDEs transforms the data from the 
time domain into the domain of global structural 
features [7]. 

3. Implementation 
In our implementation, we started with raw daily 
currency-exchange time series data, obtained from the 
Pacific Exchange Rate Service [8]. The first phase of 
our approach is the use of GARCH to select the RV 
and NV examples.  This is the most tedious part of the 
method due to the trial-and-error nature of fitting 
GARCH models.  Human expertise in this phase is 
necessary in most cases. 

The data were foreign exchange daily closing 
rates for around 70 currencies [8].  We deleted series 
that did not contain RV segments.  In the end, we had 
45 time-series, each spanning the available time-line 
of the particular currency. 

After fitting the GARCH model and obtaining the 
conditional variances, we selected the sections that 
correspond to RV and NV segments.  Fig. 1 illustrates 
this phase on the Philippines’ peso to US Dollar raw 
time-series data (Fig. 1.a) and identified volatility 
segments – in red – over time (Fig. 1.b).   
 
 

                                                          

 
 
 

 
 
 
 
 
 
   0.on

di
tio

na
l

0 100 200 300 400 500 600 700 800 900
0

0.01

02

0.03

0.04

0.05

0.06

0.07

Day

C
 S

ta
nd

ar
d 

D
ev

ia
tio

n

Peace
Volatility

 
 
 
 

1.a 
 

0 100 200 300 400 500 600 700 800 900
0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

Day

R
at

e
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Fig. 1: Plots of the price data and conditional standard 
deviations with highlighted RV clusters for PHP/USD over 
860 daily observations. 
 

To standardize the lengths of these segments we 
compute their PSDEs.   Fig. 2 plots the PSDEs for the 
segments shown in Fig. 1.b. 

The third and final phase is the training of the 
SVC decision function using the training data obtained 
in the previous two steps (GARCH + PSDEs).  It is 
worthwhile to note that in many cases a NV segment 
from one currency was in fact more volatile than a RV 
segment of another.  This fact illustrates the innate 
complexity of defining a general approach for 
identification and prediction of volatility clusters.  To 
counter the possible bias in the training/testing phase 
of SVC due to differences in base volatility levels of 
the segments, we added a new feature to each vector, 
measuring the unconditional variance of the entire 
time-series that each individual segment is from.  
Once training was completed, we tested the accuracy 
of the trained decision function on a dataset that also 
contains observations with pre-determined classes.  
We “tuned” the SVC parameters1 and continued re-
training and re-testing until the best fit between 
predicted and actual RV and NV segments was 
attained.  This iterative process provides a decision 
function that is set to be used for identification of past 
RV segments and for detection of present and about-
to-occur clusters in a real-time context.   

 
1 Kernel function and overfitting control parameter C. 



It is paramount to note that in the application 
phase our methodology is completely automated.  A 
computer simply needs to take a time-series segment 
under question and classify it using the optimal 
decision function.  For the task of identification of past 
RV segments one can input past segments to find out 
whether they are RV.    

 
 
 
 
 
 
 
 
 
 
 

Fig. 2: PSDEs of the conditional standard deviations. 
 

For the task of detection of RV in a simulated 
real-time context, we propose the following scenario.  
The computer adds each new tick – in this case, a daily 
return observation – to the end of a window of some 
(variable) size.  This window is then passed on to our 
method and a decision on its class is obtained.  If this 
window is classified as RV, then we may have 
effectively identified the beginning of a RV segment 
as it occurs.  As we describe below, the majority of 
RV segments we tested with such rolling window 
experiments were caught on the first observation of the 
RV segments. 

4. Experimental Results 
After GARCH and PSDEs steps, we had obtained 
1483 observations of segments of common length, 
around 824 of which were relative volatility segments 
and 659 were relatively nonvolatile.  In order to assess 
the accuracy of our three-step methodology, four fifths 
of the entire dataset was randomly allocated for 
training and the remaining one fifth was allocated for 
testing.  The highest accuracy of classifications on the 
testing set was 99.5%.  The optimal parameters for the 
SVC were C: 4096 and Kernel: RBF|s = 8192. 

False positives (missed relatively nonvolatile 
segments) and false negatives (missed reltively 
volatile segments) occurred in 0.07% and 0.04% of the 
segments, respectively.  This means only 0.04% of the 
relatively volatile segments in the test examples were 
not classified correctly.   

Another set of experiments was performed in 
which, rather than objectively testing the performance 
of our approach on a testing set produced the same 
way as the training set, we generated random 
segments, varying in lengths, from randomly chosen 

time series. The classes of these segments were then 
decided by the optimal SVC decision function. The 
purpose of these experiments was for visual/subjective 
validation of the method. Fig. 3 lists the results of 
experiments performed on 2 of the time-series. The 
plots display the original time series, with the 
randomly chosen segments color-coded according to 
the class, as decided by the SVC.   
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Fig. 3: Random segments classified as RV or NV. 

 
While the above results indicate the ability of 

SVC to accurately classify relatively volatile 
segments, we were more curious with how the SVC 
would fare when only a part of a volatility segment 
was available as in the case of detecting presently 
occurring clusters in a real-time environment.   

To test this we performed a series of rolling 
window experiments on a set of known RV segments.  
We let a window of fixed size begin a few ticks before 
each RV segment and classified it as it rolled over the 
boundary and into the RV segment.  This experiment 
was repeated on various window sizes in order to 
empirically determine the optimal size for this overall 
dataset.  Fig. 4 contains the histograms of the detection 
delays for several sizes.  As the figure demonstrates, in 
many cases our implementation detected the cluster 
the moment the window passed the boundary (delay of 
1 observation or tick).  The experiments showed that 
the optimal window size for this application was 10.  
In addition they validated SVC as truly capable of 
recovering complex patterns, even when statistical 
information content is relatively scarce.   
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 Fig. 4: Detection delays for rolling window experiments 
with several window sizes. Fig. 5: Prediction delays for rolling window experiments for 

window sizes equal to 10.  
 So far we have shown that our approach can be 

applied to accurately identify volatile clusters that 
have occurred in the past and to swiftly detect 
volatility periods occurring at the present moment, 
which is highly relevant in financial practice.  The 
next progression is modifying this approach to the task 
of predicting volatility clusters.  The advantage of this 
methodology is that extension to prediction can be 
accomplished with relative ease.  The only difference 
between detection and prediction – as described in the 
previous section – is the choice of the training/testing 
data sets.  Rather than choosing examples of relatively 
volatile segments – for the first class – we choose 
suitable and representative pre-volatility segments, 
which we hypothesized to contain  patterns 
differentiating segments occurring right before relative 
volatility bursts from other segments. For the second 
class, we found that best choice was a dataset of time-
series segments from currencies that do not contain 
relative volatility clusters at all.  Using this datasets, 
the accuracy of the selected SVC decision function for 
prediction of volatility bursts in a simulated real-time 
basis reached 98% (the optimal parameters for the 
SVC were C: 1024; Kernel: RBF|s = 542488).   

The first is the ability to detect more than just one 
level of volatility. The use of multiple SVCs appears 
as the simplest way to accomplish this. Several 
specifications for multiple SVCs have been proposed 
[9]: the most notable among them are the 1-vs-1, 1-vs-
all and DAGSVM methods.  We believe that our 
approach can be easily extended to handle multiple 
classes: by defining training sets with segments from 
the categories or classes of interest. 
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