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Abstract We outline technological issues and our findings 
for the problem of prediction of relative volatility bursts in 
dynamic time-series utilizing support vector classifiers (SVC).  
The core approach used for prediction has been applied 
successfully to detection of relative volatility clusters.  In 
applying it to prediction, the main issue is the selection of the 
SVC training/testing set.  We describe three selection schemes 
and experimentally compare their performances in order to 
propose a method for training the SVC for the prediction 
problem.  In addition to performing cross-validation 
experiments, we propose an improved variation to sliding 
window experiments utilizing the output from SVC s decision 
function.  Together with these experiments, we show that 
accurate and robust prediction of volatile bursts can be 
achieved with our approach.  

I. INTRODUCTION 

In [1] we proposed a multi-layer framework for detection 
of relative clustered volatility, based on supervised learning 
with support vector classifiers (SVC) [2-3], designed to be 
automated, deterministic and efficient.  We showed 
experimentally that it had a high rate of detection of relative 
clustered volatility (RCV) and could be rapidly and easily 
deployed in on-line and near-real-time applications.   

The approach also easily lends itself to be applied to the 
much harder problem of prediction of RCV, since pattern 
recognition is at the heart of it.  The only required change 
is in the type of patterns that the SVC algorithm must 
discern.  In this paper we present the technical questions 
tied to the setup of the prediction framework and our 
proposed heuristic solutions to these questions.  

Specifically, for the prediction problem we are faced with 
the challenge of SVC training/testing set selection. We need 
to decide on the choice of categories in the universe of 
time-series segments.  This choice is crucial since the more 
robust and non-biased the training data are, the more 
effective the final system is.  For detection, the two 
categories are relatively volatile (RV) and relatively 
non-volatile (RN).  This is a relatively obvious 
categorization, since RV is what we want to detect and RN, 
in this formulation, is the opposite of RV.  For prediction, 

it is much less apparent what categories imposed on the 
time-series segments are most opposite to each other in the 
sense of least pattern overlap.  The experimentally derived 
answers to this question and smaller questions tied to it are 
the crux of this paper.  

Next, we briefly describe the overall approach.  After 
that, we will introduce the three training set selection 
schemes and their motivations.  Finally, we ll summarize 
the experiments and the results, which lead to the choice of 
the optimal scheme, given the alternative training/testing 
regimes we propose.   

II. APPROACH 

The approach described in [1] is briefly summarized in 
this section.  The focal component of the approach, 
whether it s applied to detection or prediction, is the 
classification of time-series segments using SVC.  For 
detection, the assumption is that all time-series segments fall 
into one of two categories: relatively volatile (RV) and 
relatively non-volatile (RN).  This assumption then dictates 
the creation of the SVC training set.  

Using the previously mentioned GARCH model, coupled 
with 2 significance tests, we carefully choose the 
time-series examples of each category (RV & RN).   The 
first part of this step is a simple fitting of Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) 
[4-5] model to the raw time-series data.  For the most part 
the default GARCH parameters 1 can be used.  Upon 
retrieving the conditional standard deviations, we use 2 

tests to select the data points, for which the conditional 
standard deviations are significantly greater than the average 
conditional standard deviation.  An unbroken sequence of 
such data points, assuming it is longer than some 
user-defined constant, are assigned into training set s RV 
class.  Segments of data points with conditional standard 
deviations not significantly greater than the average are 
assigned into RN class.  This necessary step represents the 

                                                          

 

1 p = 1, q = 1, 



nontrivial setup and preparation of the system and, thus, 
needs to be taken only once.  Once trained, no GARCH 
fitting is required and the application of our system cuts 
down to an automated feeding of a new segment in question 
into the system.  

Because the lengths of the segments in the training set are 
not all equal, application of SVC with such a training set is 
impossible without some reformulation of the SVC Kernel 
or transformation/standardization of the data.  This is due 
to the encoding of the time-series segments as vectors.  
Each time-series data point becomes a vector 
component/dimension.  Thus, all segments need to be of 
same length, so they may be encoded into vectors of same 
dimensionality.  This, however, is not the case with the 
current training set.  To resolve this issue we must apply a 
crucial standardization step, which aims to make all 
segments in the training set of same length.  To achieve 
this standardization, we compute the Power Spectrum 
Density Estimates (PSDE), via the periodogram  [6], of the 
segments.  By mapping the time-domain segments into the 
frequency domain, this scheme standardizes the lengths of 
the signals and, as a secondary benefit, creates a common 
global context for the data. 

The final step of the approach is the actual SVC training 
with the training set of standardized examples of RV and 
RN, as selected with post-GARCH 2 tests.  This step, like 
the GARCH fitting step, requires meticulous search for the 
best SVC parameters, ones which seed the highest accuracy 
of classification.  The testing is done on a data set which, 
like the training set, contains examples of each class.  Once 
the best parameters are chosen and the most accurate 
decision function is trained, the setup and preparation of the 
system are completed, and from then on the model is ready 
to identify past volatility and to detect ensuing volatile 
clusters in their early onset. 

III. TRAINING SET SELECTION SCHEMES 

In its basic form, SVC is a binary classification technique.  
The training/testing data are composed of two classes, 
conventionally labeled as +1 and -1.  Before training can 
begin, we need to supply a dataset with examples from these 
two classes.  We extract these examples from the raw 
time-series.  Examples of class +1 are segments occurring 
before volatility clusters, pre-RV.  This is an intuitive 
choice, as the patterns we seek for prediction are most likely 
found in the segments occurring before the RV segments.  
One interesting point however is whether we should choose 
segments occurring immediately before the RV regions or 
some horizon before.  On the other hand, it is more 
difficult to settle on the choice of examples for class -1.  
The reason is that it is not certain whether we should choose 
segments with patterns that we assess are not present in 
class +1, or simply segments not chosen in class +1.  In the 
first case, the follow-up question is where such patterns are 

located.   
To help resolve the above question, we explore three 

schemes, each with a different definition of class -1 and 
perform several experiments, aimed at highlighting the 
optimal scheme.  

Table I contains the descriptions of the classes in the first 
scheme.  The choice for class -1 is motivated by the idea 
that segments that are taken from time-series with no 
GARCH effects possess patterns most in contrast to the 
patterns in class +1.  Indeed, these segments are neither 
pre-RV nor RV, and are guaranteed not to possess pre-RV 
patterns, as there are no RV bursts in their surroundings.  
To determine if a raw time-series had any relative clustered 
volatility, we used Engle s Test for GARCH effects [5].  
Without GARCH effects, it would be impossible for 
volatility to persist; this persistence is the central feature of 
volatility clusters, meaning that it is a prerequisite for the 
formation of relative volatility clusters. 

TABLE I 

TRAINING SET SELECTION SCHEME #1 

Class Name Description 

+1 Pre-RV 

Segments occurring immediately before an 
RV segment, as selected for the detection 
task 

 

a segment (w/ lengths above 
user-defined constant) composed of data 
points with the conditional S.Ds. above the 
average conditional S.D.   

It may contain RV segments, which are not 
longer than the user-defined constant. 

-1 Non-Volatile Segments of random length. 

 

Our criticism for this scheme is that some patterns may be 
present in class +1 and absent in class -1 because class +1 
and class -1 observations are extracted from different raw 
time-series.  These confounding patterns could in effect 
introduce a bias in the SVC training.   

To address the potential bias criticism of the first scheme, 
we consider the second scheme, where we chose the class -1 
segments from the same time-series as the pre-RV segments.  
The second scheme is outlined in Table II. 

TABLE II 

TRAINING SET SELECTION SCHEME #2 

Class Name Description 
+1 Pre-RV As scheme #1. 

-1 Pre-Pre-RV 
Segments, occurring immediately before 
the Pre-RV segments chosen for class +1. 

 

Finally, in the third scheme, outlined in Table III, the 
premise is to truly divide the whole space of time-series 
segments into class +1, pre-RV bursts, and all else.  The 
next section presents the experimental conditions and results 
for each scheme in the hopes of putting forward the best 
choice for the training/testing set selection scheme.     



TABLE III 

TRAINING SET SELECTION SCHEME #3 

Class Name Description 
+1 Pre-RV As scheme #1. 

-1 All Else 

Segments of random length, between 
user-defined constraints, chosen at random 
from the rest of the time-series data, once 
class +1 has been selected. 

IV. EXPERIMENTAL CONDITIONS AND RESULTS 

The raw time-series data are borrowed from the financial 
domain, representing the inter-day foreign exchange (FX) 
rates for a number of currencies and commodities.  These 
data are available from an on-line database [7], which 
contains FX rates for 81 currencies and commodities.  In 
financial time-series, volatility clusters have been found to 
affect long-term financial trends, socio-economic 
development, and living standards [8-13].   

To facilitate the running of the experiments, we have 
developed a comprehensive volatility analysis tool, called 
VolatilityAnalyst ® [14], which allows the user to easily 
perform the necessary tasks and experiments via the 
software GUI.  The SVC module in VolatilityAnalyst is an 
interface to LIBSVM [15], a well-known implementation of 
SVC and other support vector machines algorithms. 

We report the results of the cross-validation (CV) 
experiments which were performed to assess the accuracy of 
the trained SVC model on a testing set, derived identically 
to the training set.   

A. Cross-Validation Experiments 

In the CV experiments, the accuracy score is calculated 
based on the results of n sub-experiments, where each 
sub-experiment consists of a different training and testing 
set.  A larger n is preferred for smaller datasets. In all three 
schemes the datasets were around 1000 observations in size.  
For such intermediate-sized datasets, setting n to 5 is an 
acceptable option.  Through these experiments we hope to 
choose the optimal training scheme before we move on to 
other experiments.  Table IV summarizes the best CV 
results.   

TABLE IV 

CV RESULTS FOR THE THREE TRAINING SET SELECTION 
SCHEMES 

Scheme False Pos 
False 
Neg 

Training 
Time SVC Parameters 

#1 1% 3% 5s 
C: 44400  

Kernel: RBF| =40000 

#2 17% 13% 10s 
C: 35000  

Kernel: RBF| =10500 

#3 24% 18% 30s 
C: 10400  

Kernel: RBF| =650000 

 

The process of searching for optimal SVC parameters was 

simplified through the LIBSVM parameter selection tool 
[15].  For the specified range of the parameters, the tool 
generates the contour plot of cross-validation accuracy.  
Using the plot, one can zero in on the parameters that yield 
the best results.  Figure 1 is the contour plot for scheme #1 
showing the contours of the top CV accuracies. 

Fig. 1. CV contour plots for the range of SVC parameters that yield the 
highest CV accuracy of 98%. 

The table summarizes the finding that scheme #1 defines 
the optimal choice of categories.  The reason for the low 
performance of schemes #2 and #3 may lie in the possibility 
that in both schemes there is a lot of overlap of patterns 
between class -1 and class +1.  In scheme #2, this is 
evident if one realizes that many pre-pre-RV examples may 
in fact be examples of pre-RV, since the boundaries between 
the two classes are not clearly defined.  Similarly, in the 
third scheme, incorporating all the segments not included in 
class +1 into class -1 may poorly separate the relevant 
patterns. 

It is important to note that the criticism of potential bias 
in scheme #1 may still be valid, even with such high 
reported CV accuracy.  After all, the testing is performed 
on data that may include the same confounding patterns 
present in the training data.   

To address this criticism and also to test the consistency 
and the practical applicability of the framework, we 
performed sliding windows experiments, simulating the 
real-time application of the system.  These experiments are 
helpful in showing the ability of our system to predict well 
known RV bursts.  They can also help understand the cases 
when misclassifications occur.  

B. Sliding Windows Experiments 

In the sliding windows experiments, we select a specific 
RV example, start some time before it and commence to 
classify the windows 

 

time-series segments 

 

using the 
pre-trained SVC model, as they slide towards the RV burst.  
We record if and how soon a window is classified as class 
+1, or pre-RV.  In addition, we run the experiment on a 
section of the time-series that do not have any RV bursts, to 
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test if the results are consistent and to ensure that random 
segments are not classified as pre-RV. 

Rather than keeping the size of each window throughout 
the experiment constant, we can test several windows of 
varying data-point length and make the final judgment based 
on the window for which the SVC decision had the highest 
confidence.  To measure this confidence we use the SVC 
decision function: 
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(1) 

where x is the new test observation, xi and yi are the ith 

training observation and the corresponding class, K() is the 
Kernel function, i is the ith Lagrangian of the training 
problem and lSV is the number of support vectors.  If the 
sign is positive, the class is +1 and if it s negative, the class 
is -1.  If we remove the sign function, however, the 
absolute value would measure the strength/confidence of the 
classification, which is what we use for ranking the 
windows and choosing the optimal one.  Figure 2 
illustrates the variable-sized sliding windows experiments.   

Fig. 2. Variable-sized sliding windows experiment. 

The figure illustrates how at each tick, i.e. tick ti, we test 
several windows and choose the optimal one.  Whatever 
the class of this window, we accordingly make the final 
judgment of whether a prediction has taken place or not.  
This is repeated for each new tick.  The benefit of this 
setup is that it recognizes that in some cases a smaller 
window may be preferred to make sure that irrelevant noisy 
patterns are not included in the classification decision, while 
in other cases a larger window may be needed so that it 
contains sufficient pre-RV patterns for an unambiguous 
prediction.  These two aspects make the system more 
flexible when recognizing the patterns for pre-RV class.   

In figure 3 we plot the prediction results for the three 
schemes.  The horizontal axis measures how many ticks 
before the RV segments the system first classified the 
optimal window as pre-RV. 
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Fig. 3. Variable-sized sliding windows experiment results for the three 
schemes. 

As we can see, the results of Table IV are in tune with the 
rolling windows experiments.  Scheme #1 comes out as the 
most robust way for training the SVC decision function for 
the prediction, as 88% of the RV segments were predicted, 
with 43% predicted 19 ticks before the cluster onset.  In the 
second scheme only 82% were predicted.  Finally with the 
third scheme, only 67% were predicted.  In the majority of 
the cases, most of the windows after the first pre-RV 
classification were also classified as pre-RV.  Note in 
figure 3 that windows 19 ticks prior to the RV segments 
seem to possess most of the pre-RV patterns.  We don t 
check to see what happens before 19 ticks because the gaps 
between many RV segments are not much larger than that, 
and we don t want to confuse the classification by 
identifying the classes of other RV segments. 

Any bias that may be present in scheme #1 due to its 
definition of class -1 is insignificant as compared to its 
successful separation of the relevant pre-RV patterns from 
all other ones.   

We also tested segments which did not precede RV 
segments just to see the consistency of the performance.  
These results and the results of the variable-sized sliding 
window experiments are summarized in table V.   

TABLE V 

SUMMARY OF ROLLING WINDOW EXPERIMENTS FOR THE 
THREE SCHEMES 

Scheme Sliding Windows 

#1 
Consistently classifies the windows occurring 
on average 19 data points before a RV segment 
as Class pre-RV. 

#2 
Results inconsistent and non-robust.  Many 
classifications of pre-RV windows, which do 
not occur before an RV region. 

#3 
Results are worse than scheme #2.  
Seemingly random classification of segments 
as pre-RV. 

V. CONCLUSIONS 

Optimal 
windows

 

ti 
ti+1 

ti+2

 

Volatility cluster 



We have presented what we view as the most intuitive 
choices for the SVC training/testing datasets and carried out 
performance comparisons between them.  According to 
several experiments, we concluded that scheme #1 gives the 
most robust definition for the SVC categories.  In the 
future, we plan to introduce several classes for a more 
refined prediction of various levels of clustered volatility.  
Thus, we will once again have to solve the question of 
optimal dataset selection.  We will also continue testing 
and experimenting with relatively clustered volatility 
prediction in combination with our established detection 
scheme. 

Besides the comparison, the paper shows that accurate 
and consistent prediction of RV segments is possible with 
our approach. Especially promising in this regard is the use 
of variable-sized windows for custom-fitting the windows to 
only the relevant patterns.  There is however an execution 
time cost to doing so, as more windows need to be tested 
with each new data point.  In a near real-time scenario, this 
could pose some problems.  However, parallelizing the 
testing of all the windows, which is already in our future 
projects pipeline, could greatly reduce the execution time.  
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