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Abstract—We outline technological issues and our findings
for the problem of prediction of relative volatility bursts in
dynamic time-series utilizing support vector classifiers (SVC).
The core approach used for prediction has been applied
successfully to detection of relative volatility clusters. In
applying it to prediction, the main issue is the selection of the
SVC training/testing set. We describe three selection schemes
and experimentally compare their performances in order to
propose a method for training the SVC for the prediction
problem. In addition to performing cross-validation
experiments, we propose an improved variation to diding
window experiments utilizing the output from SVC’s decision
function. Together with these experiments, we show that
accurate and robust prediction of volatile bursts can be
achieved with our approach.

I.INTRODUCTION

In [1] we proposed a multi-layer framework for detection
of relative clustered volatility, based on supervised learning
with support vector classifiers (SVC) [2-3], designed to be
automated, deterministic and efficient. =~ We showed
experimentally that it had a high rate of detection of relative
clustered volatility (RCV) and could be rapidly and easily
deployed in on-line and near-real -time applications.

The approach also easily lends itself to be applied to the
much harder problem of prediction of RCV, since pattern
recognition is at the heart of it. The only required change
is in the type of patterns that the SVC algorithm must
discern. In this paper we present the technical questions
tied to the setup of the prediction framework and our
proposed heuristic solutions to these questions.

Specifically, for the prediction problem we are faced with
the challenge of SV C training/testing set selection. We need
to decide on the choice of categories in the universe of
time-series segments.  This choice s crucia since the more
robust and non-biased the training data are, the more
effective the final system is. For detection, the two
categories are relatively volatile (RV) and relatively
non-volatile (RN). This is a relatively obvious
categorization, since RV is what we want to detect and RN,
in this formulation, is the opposite of RV. For prediction,

Dr. Peter Anselmo
Department of Management
New Mexico Tech
Socorro, NM 87801
E-mail: anselmo@nmt.edu

it is much less apparent what categories imposed on the
time-series segments are most opposite to each other in the
sense of least pattern overlap. The experimentally derived
answers to this question and smaller questions tied to it are
the crux of this paper.

Next, we briefly describe the overall approach. After
that, we will introduce the three training set selection
schemes and their motivations. Finaly, we’ll summarize
the experiments and the results, which lead to the choice of
the optimal scheme, given the aternative training/testing
regimes we propose.

Il. APPROACH

The approach described in [1] is briefly summarized in
this section. The foca component of the approach,
whether it’s applied to detection or prediction, is the
classification of time-series segments using SVC. For
detection, the assumption is that all time-series segments fall
into one of two categories. relatively volatile (RV) and
relatively non-volatile (RN). This assumption then dictates
the creation of the SV C training set.

Using the previously mentioned GARCH model, coupled
with y? significance tests, we carefully choose the
time-series examples of each category (RV & RN). The
first part of this step is a simple fitting of Generalized
Autoregressive Conditional Heteroskedasticity (GARCH)
[4-5] model to the raw time-series data.  For the most part
the default GARCH parameters® can be used. Upon
retrieving the conditional standard deviations, we use x*
tests to select the data points, for which the conditional
standard deviations are significantly greater than the average
conditional standard deviation. An unbroken sequence of
such data points, assuming it is longer than some
user-defined constant, are assigned into training set’s RV
class. Segments of data points with conditional standard
deviations not significantly greater than the average are
assigned into RN class. This necessary step represents the
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nontrivial setup and preparation of the system and, thus,
needs to be taken only once. Once trained, no GARCH
fitting is required and the application of our system cuts
down to an automated feeding of a new segment in question
into the system.

Because the lengths of the segmentsin the training set are
not all equal, application of SVC with such atraining set is
impossible without some reformulation of the SVC Kernel
or transformation/standardization of the data. This is due
to the encoding of the time-series segments as vectors.
Each time-series data point becomes a vector
component/dimension. Thus, all segments need to be of
same length, so they may be encoded into vectors of same
dimensionality. This, however, is not the case with the
current training set.  To resolve this issue we must apply a
crucial standardization step, which aims to make all
segments in the training set of same length. To achieve
this standardization, we compute the Power Spectrum
Density Estimates (PSDE), via the “periodogram” [6], of the
segments. By mapping the time-domain segments into the
frequency domain, this scheme standardizes the lengths of
the signals and, as a secondary benefit, creates a common
global context for the data.

The fina step of the approach is the actual SVC training
with the training set of standardized examples of RV and
RN, as selected with post-GARCH y? tests.  This step, like
the GARCH fitting step, requires meticulous search for the
best SVC parameters, ones which seed the highest accuracy
of classification. The testing is done on a data set which,
like the training set, contains examples of each class. Once
the best parameters are chosen and the most accurate
decision function is trained, the setup and preparation of the
system are completed, and from then on the model is ready
to identify past volatility and to detect ensuing volatile
clustersin their early onset.

I11. TRAINING SET SELECTION SCHEMES

Initsbasic form, SVC isahinary classification technique.
The training/testing data are composed of two classes,
conventionally labeled as +1 and -1. Before training can
begin, we need to supply a dataset with examples from these
two classes. We extract these examples from the raw
time-series. Examples of class +1 are segments occurring
before volatility clusters, pre-RV. This is an intuitive
choice, as the patterns we seek for prediction are most likely
found in the segments occurring before the RV segments.
One interesting point however is whether we should choose
segments occurring immediately before the RV regions or
some horizon before.  On the other hand, it is more
difficult to settle on the choice of examples for class -1.
The reason is that it is not certain whether we should choose
segments with patterns that we assess are not present in
class +1, or simply segments not chosen in class+1. Inthe
first case, the follow-up question is where such patterns are

located.

To help resolve the above question, we explore three
schemes, each with a different definition of class -1 and
perform several experiments, aimed at highlighting the
optimal scheme.

Table | contains the descriptions of the classes in the first
scheme. The choice for class -1 is motivated by the idea
that segments that are taken from time-series with no
GARCH effects possess patterns most in contrast to the
patterns in class +1. Indeed, these segments are neither
pre-RV nor RV, and are guaranteed not to possess pre-RV
patterns, as there are no RV bursts in their surroundings.
To determine if a raw time-series had any relative clustered
volatility, we used Engle’s Test for GARCH effects [5].
Without GARCH effects, it would be impossible for
volatility to persist; this persistence is the central feature of
volatility clusters, meaning that it is a prerequisite for the
formation of relative volatility clusters.

TABLEI
TRAINING SET SELECTION SCHEME #1

Class Name Description

Segments occurring immediately before an
RV segment, as selected for the detection
task — a segment (w/ lengths above
user-defined constant) composed of data
points with the conditional S.Ds. above the
average conditional S.D.

+1 Pre-RV

It may contain RV segments, which are not
longer than the user-defined constant.

-1 Non-Volatile | Segments of random length.

Our criticism for this scheme is that some patterns may be
present in class +1 and absent in class -1 because class +1
and class -1 observations are extracted from different raw
time-series. These confounding patterns could in effect
introduce abiasin the SV C training.

To address the potential bias criticism of the first scheme,
we consider the second scheme, where we chose the class -1
segments from the same time-series as the pre-RV segments.
The second schemeisoutlined in Table 1.

TABLEII
TRAINING SET SELECTION SCHEME #2
Class Name Description
+1 Pre-RV Asscheme #1.
) Segments, occurring immediately before
1 Pre-Pre-RV the Pre-RV segments chosen for class +1.

Finally, in the third scheme, outlined in Table IlI, the
premise is to truly divide the whole space of time-series
segments into class +1, pre-RV bursts, and al else. The
next section presents the experimental conditions and results
for each scheme in the hopes of putting forward the best
choice for the training/testing set selection scheme.



TABLEIII
TRAINING SET SELECTION SCHEME #3

Class Name Description
+1 Pre-RV As scheme #1.
Segments of random length, between
1 All Else user-defined constrain?s, chos_en at random
from the rest of the time-series data, once
class +1 has been selected.

IV. EXPERIMENTAL CONDITIONS AND RESULTS

The raw time-series data are borrowed from the financia
domain, representing the inter-day foreign exchange (FX)
rates for a number of currencies and commodities. These
data are available from an on-line database [7], which
contains FX rates for 81 currencies and commodities. In
financial time-series, volatility clusters have been found to
affect long-term  financial trends, socio-economic
development, and living standards [8-13].

To facilitate the running of the experiments, we have
developed a comprehensive volatility analysis tool, called
VolatilityAnalyst ® [14], which alows the user to easily
perform the necessary tasks and experiments via the
software GUI. The SVC module in VolatilityAnalyst is an
interface to LIBSVM [15], a well-known implementation of
SVC and other support vector machines algorithms.

We report the results of the cross-validation (CV)
experiments which were performed to assess the accuracy of
the trained SVC model on a testing set, derived identically
to the training set.

A. Cross-Validation Experiments

In the CV experiments, the accuracy score is calculated
based on the results of n sub-experiments, where each
sub-experiment consists of a different training and testing
set. A larger nis preferred for smaller datasets. In al three
schemes the datasets were around 1000 observations in size.
For such intermediate-sized datasets, setting n to 5 is an
acceptable option. Through these experiments we hope to
choose the optimal training scheme before we move on to
other experiments. Table IV summarizes the best CV
results.

TABLE IV
CV RESULTSFOR THE THREE TRAINING SET SELECTION
SCHEMES
Scheme | False Pos False T“”?‘”'”g SVC Parameters
Neg Time
C: 44400
0, 0,
#l 1% 3% 5s Kernel: RBFly=a0000
C: 35000
0, 0,
#2 17% 13% 10s Kerndl: RBFh=10s0
C: 10400
0, 0,
#3 24% 18% 30s Kernel: RBFly=esooco

The process of searching for optimal SV C parameters was

simplified through the LIBSVM parameter selection tool
[15]. For the specified range of the parameters, the tool
generates the contour plot of cross-validation accuracy.
Using the plot, one can zero in on the parameters that yield
the best results.  Figure 1 is the contour plot for scheme #1
showing the contours of the top CV accuracies.
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Fig. 1. CV contour plotsfor the range of SVC parameters that yield the
highest CV accuracy of 98%.

The table summarizes the finding that scheme #1 defines
the optimal choice of categories. The reason for the low
performance of schemes #2 and #3 may lie in the possibility
that in both schemes there is a lot of overlap of patterns
between class -1 and class +1. In scheme #2, this is
evident if one realizes that many pre-pre-RV examples may
in fact be examples of pre-RV, since the boundaries between
the two classes are not clearly defined. Similarly, in the
third scheme, incorporating all the segments not included in
class +1 into class -1 may poorly separate the relevant
patterns.

It is important to note that the criticism of potential bias
in scheme #1 may still be valid, even with such high
reported CV accuracy. After al, the testing is performed
on data that may include the same confounding patterns
present in the training data.

To address this criticism and also to test the consistency
and the practica applicability of the framework, we
performed dliding windows experiments, simulating the
real-time application of the system. These experiments are
helpful in showing the ability of our system to predict well
known RV bursts. They can also help understand the cases
when misclassifications occur.

B. Siding Windows Experiments

In the dliding windows experiments, we select a specific
RV example, start some time before it and commence to
classify the windows — time-series segments — using the
pre-trained SVC model, as they slide towards the RV burst.
We record if and how soon a window is classified as class
+1, or pre-RV. In addition, we run the experiment on a
section of the time-series that do not have any RV bursts, to



test if the results are consistent and to ensure that random
segments are not classified as pre-RV.

Rather than keeping the size of each window throughout
the experiment constant, we can test several windows of
varying data-point length and make the final judgment based
on the window for which the SV C decision had the highest
confidence. To measure this confidence we use the SVC
decision function:

lsy
9=sign(zﬂ«.MK(>ﬁ,X)+bJ ®

where X is the new test observation, x; and y; are the jth
training observation and the corresponding class, K() is the
Kernel function, 4 is the i" Lagrangian of the training
problem and |, is the number of support vectors. If the
sign is positive, the classis +1 and if it’s negative, the class
is -1. If we remove the sign function, however, the
absolute value would measure the strength/confidence of the
classification, which is what we use for ranking the
windows and choosing the optima one.  Figure 2
illustrates the variable-sized sliding windows experiments.
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Fig. 2. Variable-sized sliding windows experiment.

The figure illustrates how at each tick, i.e. tick t;, we test
several windows and choose the optimal one. Whatever
the class of this window, we accordingly make the final
judgment of whether a prediction has taken place or not.
This is repeated for each new tick. The benefit of this
setup is that it recognizes that in some cases a smaller
window may be preferred to make sure that irrelevant noisy
patterns are not included in the classification decision, while
in other cases a larger window may be needed so that it
contains sufficient pre-RV patterns for an unambiguous
prediction. These two aspects make the system more
flexible when recognizing the patterns for pre-RV class.

In figure 3 we plot the prediction results for the three
schemes. The horizontal axis measures how many ticks
before the RV segments the system first classified the
optimal window as pre-RV.

50

@ Scheme #1
W Scheme #2
O Scheme #3

45

40

30

25

20

Percent of total RV segments

ettt o Bl

l@l'/@N‘ol&:@'@p,@%fbﬂm%»%wwowwﬁbs&@

Data ticks offset from the start of RV segments

Fig. 3. Variable-sized dliding windows experiment results for the three
schemes.

Aswe can see, theresults of Table 1V arein tune with the
rolling windows experiments.  Scheme #1 comes out as the
most robust way for training the SVC decision function for
the prediction, as 88% of the RV segments were predicted,
with 43% predicted 19 ticks before the cluster onset.  In the
second scheme only 82% were predicted. Finaly with the
third scheme, only 67% were predicted. In the mgjority of
the cases, most of the windows after the first pre-RV
classification were also classified as preRV. Note in
figure 3 that windows 19 ticks prior to the RV segments
seem to possess most of the pre-RV patterns. We don’t
check to see what happens before 19 ticks because the gaps
between many RV segments are not much larger than that,
and we don’t want to confuse the classification by
identifying the classes of other RV segments.

Any bias that may be present in scheme #1 due to its
definition of class -1 is insignificant as compared to its
successful separation of the relevant pre-RV patterns from
all other ones.

We also tested segments which did not precede RV
segments just to see the consistency of the performance.
These results and the results of the variable-sized dliding
window experiments are summarized in table V.

TABLEV

SUMMARY OF ROLLING WINDOW EXPERIMENTS FOR THE
THREE SCHEMES

Scheme Sliding Windows

Consistently classifies the windows occurring
#1 on average 19 data points before aRV segment
as Class pre-RV.

Results inconsistent and non-robust. Many
#2 classifications of pre-RV windows, which do
not occur before an RV region.

Results are worse than scheme #2.
#3 Seemingly random classification of segments
as pre-RV.

V. CONCLUSIONS



We have presented what we view as the most intuitive
choices for the SV C training/testing datasets and carried out
performance comparisons between them. According to
several experiments, we concluded that scheme #1 gives the
most robust definition for the SVC categories. In the
future, we plan to introduce several classes for a more
refined prediction of various levels of clustered volatility.
Thus, we will once again have to solve the question of
optimal dataset selection. We will also continue testing
and experimenting with relatively clustered volatility
prediction in combination with our established detection
scheme.

Besides the comparison, the paper shows that accurate
and consistent prediction of RV segments is possible with
our approach. Especially promising in this regard is the use
of variable-sized windows for custom-fitting the windows to
only the relevant patterns. There is however an execution
time cost to doing so, as more windows need to be tested
with each new data point. In a near real-time scenario, this
could pose some problems. However, paralelizing the
testing of al the windows, which is aready in our future
projects pipeline, could greatly reduce the execution time.
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